

Letter

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

TEM and ED confirmation of conversion of 3D and 2D perovskite-type into fluorite-type structure

Surinderjit Singh Bhella^a, Tobias Fürstenhaupt^b, Venkataraman Thangadurai^{a,*}

^a Department of Chemistry, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4 Canada

^b Microscopy and Imaging Facility, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1 Canada

ARTICLE INFO

Article history: Received 19 February 2010 Received in revised form 30 April 2010 Accepted 30 April 2010 Available online 7 May 2010

Keywords: CO₂ capture synthesis Solid-gas phase synthesis Ce_{1-x}M_xO_{2- δ} (M = In Y) Electron diffraction High-resolution transmission electron microscopy Metastable fluorites

ABSTRACT

In this paper, we confirm the transformation of three-dimensional (3D) In-doped perovskite-like $BaCe_{1-x}In_xO_{3-\delta}$ (x=0.1; 0.2) and layered (two-dimensional) perovskite-related $Sr_2Ce_{1-x}Y_xO_{4-\delta}$ (x=0.1; 0.2) into corresponding fluorite-type $Ce_{1-x}M_xO_{2-\delta}$ (M=In, Y) under CO_2 mediated reaction at elevated temperature, respectively, using high-resolution transmission electron microscopy (HRTEM) and electron diffraction (ED) studies. HRTEM images confirmed expected nano-sized materials and ED study showed the formation of a single-phase fluorite-type CeO₂ structure and absence of ED patterns resulting from the perovskite-like precursors and potential reaction by-products such as In_2O_3 and Y_2O_3 after the CO_2 reaction, which is consistent with ex situ and in situ powder X-ray diffraction (PXRD), and strongly support the proposed structural transformation reactions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Design and preparation of solid-state functional property materials for specific applications, including fuel cells, batteries, sensors, thermoelectrics, photovoltaics, dielectrics, electronics, and catalysts, have been routine work for several material chemists and scientists [1–6]. Solid-state materials are being commonly synthesized using a conventional mixed-oxide route, well known as a ceramic method, at elevated temperatures. Several low-temperature methods, also popularly called as chimiedouce synthesis, involve preparation of precursor materials by ceramic method and subsequently transformed into desired and designed novel metastable functional materials [3-9]. A wellknown example is the synthesis of new modification of TiO₂ by a mild-dehydration of $H_2Ti_4O_9$ · H_2O . The precursor $H_2Ti_4O_9$ · H_2O was prepared from the K-analogue K₂Ti₄O₉ (synthesized by ceramic reaction) by ion-exchange reaction [7]. Other significant examples are ion-exchange and double ion-exchange (metathesis reaction) of a large family of layered (2D) perovskite-like Dion-Jacobson (DJ) and Ruddlesden-Popper (RP)-type structures and inter-conversion of RP phase into Aurivillius structure and vice-versa [8-11]. Numerous metastable allotropes compounds were also prepared by gentle dehydration of proton and/or hydrated metal oxides in air or vacuum. Another synthesis method utilizes H_2 or inert atmospheres to prepare compounds containing lower valence cations than that of prepared in ambient condition.

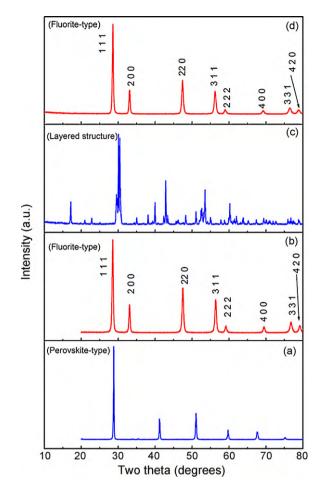
Our group has employed a new two steps synthesis to stabilize indium-doped CeO₂ structure, which was not attainable by a regular mixed-oxide solid-state reaction at 800–1500 °C [12–15]. This approach involves leaching of alkaline from the perovskite and its related structure precursors under CO₂ at elevated temperatures and subsequent acid washing. In the literature, the chemical stability of doped perovskite-type ABO₃ (A=Sr, Ba, B=Ce, Zr) under CO₂ at elevated temperatures was well documented [16–24]. For example, Y₂O₃-doped BaCeO₃ (BCY) was found to be chemically unstable in pure CO₂ at elevated temperature according to the reaction BaCe_{1-x}Y_xO_{2-\delta}(s) + CO₂(g) $\xrightarrow{\Delta}$ BaCO₃(s) + Ce_{1-x}Y_xO_{3-\delta}(s) and partial substitution of Ti and or Zr for Ce in BCY improved the chemical stability in CO₂ [12,13,17,25–30]. Recently, Xie and others have investigated the effect of Sn, Ta and Nb substitution for Ce in BCY on chemical stability and proton conductivity [25–30].

It is very important to note that acceptor-doped ceria based materials are being considered as the potential electrolyte materials for the intermediate temperature solid oxide fuel cells (IT-SOFCs). Particularly, $Ce_{1-x}M_xO_{2-\delta}$ (M = Y, Sm, Gd) have drawn much attention because of their high oxide ion conductiv-

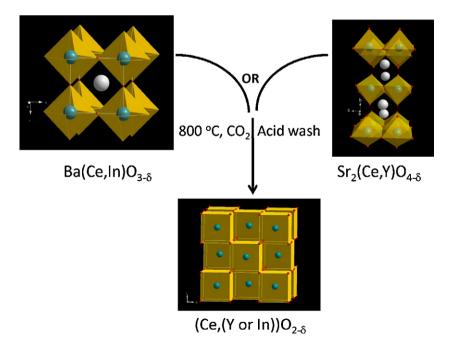
^{*} Corresponding author. Tel.: +1 403 210 8649; fax: +1 403 289 9488. *E-mail address:* vthangad@ucalgary.ca (V. Thangadurai).

^{0925-8388/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2010.04.239

ity compared to Y_2O_3 -doped ZrO_2 and SrO- and MgO-doped perovskite-like LaGaO₃ (LSGM) [31]. Furthermore, the doped CeO₂-based electrolytes appear to be chemically stable against reaction with Ni anode as well as several perovskite-type structure cathode materials such as $La_{1-x}Sr_xMO_3$ (M = Mn, Fe, Co) [32]. Accordingly, understanding of structure and morphology (particle size) of the fluorite-type $Ce_{1-x}M_xO_{2-\delta}$ (M = In, Y) compounds prepared from perovskites under CO₂ atmosphere is very useful for further development of ceria electrolytes. Also, the present work provides answer to a key question about phase purity of the fluorite-type product obtained after CO₂ reaction using electron diffraction (ED). In this letter, we confirm the formation a single-phase fluorite-type solid solution $Ce_{1-x}M_xO_{2-\delta}$ using high-resolution transmission electron microscopy (HRTEM) combined with ED and PXRD.


2. Experimental details

Ce_{1-x}M_xO_{2-δ} (M=In, Y; x=0.1; 0.2) was synthesized by CO₂ mediated process from the perovskite-type BaCe_{1-x}In_xO_{3-δ} and layered Sr₂Ce_{1-x}Y_xO_{4-δ}, respectively, at elevated temperature of 800 °C and subsequent acid washing using dilute mineral acids [11–13]. The precursors BaCe_{1-x}In_xO_{3-δ} and Sr₂Ce_{1-x}Y_xO_{4-δ} were prepared by a conventional ceramic method in air with final sintering temperature at 1500 °C and 1350 °C, respectively for 24 h, using appropriate amounts of high purity SrCO₃ (99+%, VWR International), BaCO₃ (99+%, VWR International), CeO₂ (99.5%, Alfa Aesar), and In₂O₃ (99.9%, Alfa Aesar). As-prepared samples after CO₂ reaction and subsequent acid washed were characterized using a powder X-ray diffraction (PXRD) (Bruker D8 powder X-ray diffractometer; CuKα, 40 kV, 40 mA) at room temperature.


Further characterization involves use of transmission electron microscopy (TEM) coupled with electron diffraction (ED). It was done on a FEI Tecnai F20 FEG-TEM (FEI, Eindhoven, The Netherlands) equipped with a Gatan Imaging Filter and a Gatan 860 GIF 2001 CCD of 1024×1024 resolution. Standard TEM was done at magnifications between 8000 and 67,000. HRTEM was performed at magnifications between 940,000 and 1,350,000. The diffraction patterns were taken at a camera length of 400 mm and directly after taking each individual diffraction pattern of the sample, it was exchanged by a reference sample of amorphous gold without changing any settings on the microscope. The diffraction rings of this amorphous gold were used to confirm a proper calibration in diffraction mode of the equipment.

3. Results and discussion

PXRD (Fig. 1) confirmed the formation of fluorite-type structure for $Ce_{1-x}M_xO_{2-\delta}$ (M = In, Y; x = 0.1; 0.2) from the corresponding $BaCe_{1-x}M_xO_{3-\delta}$ under CO_2 at elevated temperatures, which was

Fig. 1. PXRD patterns of (a) as-prepared perovskite-like structure $BaCe_{0.9}In_{0.1}O_{2.95}$, (b) after heating the sample "a" at 800 °C in CO₂ for 12 h and subsequently treated it with dilute acid and dried in ambient air, (c) K₂NiF₄-related layered perovskite-type structure of as-prepared Sr₂Ce_{0.9}Y_{0.1}O_{3.95}, (d) after heating the sample "c" at 800 °C in CO₂ for 12 h and subsequently treated it with dilute acid and dried in ambient air.

Fig. 2. Idealized crystal structure showing the formation of In and or Y-doped CeO₂ from the perovskite-like structure doped BaCeO₃ and perovskite-related layered structure doped Sr₂CeO₄ in CO₂ at elevated temperature and subsequent acid washing [14,15].

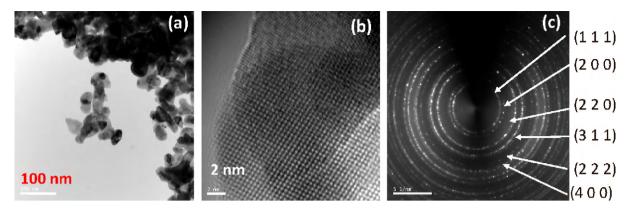


Fig. 3. TEM and HRTEM images of as-prepared (CO₂ capture method) powdered Ce_{0.9}In_{0.1}O_{1.95} from the corresponding 10 mol% In-doped BaCeO₃: (a) 100 nm scale, (b) 2 nm scale and (c) selected area electron diffraction pattern.

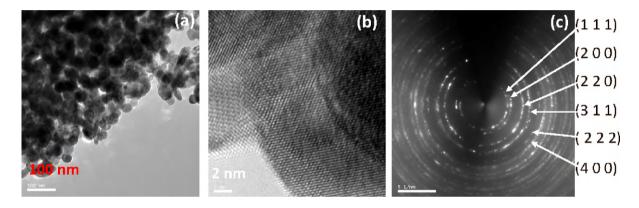


Fig. 4. TEM and HRTEM images of as-prepared (CO₂ capture method) powdered Ce_{0.8}In_{0.2}O_{1.9} from the corresponding 20 mol% In-doped BaCeO₃: (a) 100 nm scale, (b) 2 nm scale and (c) selected area electron diffraction pattern.

found to be consistent with ex situ and in situ X-ray studies [12,14,15]. The PXRD of CO₂ mediated synthesized Ce_{0.9}In_{0.1}O_{1.95}, Ce_{0.8}In_{0.2}O_{1.9}, Ce_{0.9}Y_{0.1}O_{1.95} and Ce_{0.8}Y_{0.2}O_{1.9} could be indexed on a cubic fluorite-type lattice constant of 5.398(1)Å, 5.393(1)Å and 5.421(2)Å, respectively. Fig. 2 shows the idealized crystal structure of the conversion of a perovskite and perovskite-related structure materials into corresponding metal-doped fluorite-type structure. We have also performed energy dispersive X-ray spectroscopy (EDX) for the synthesized powder materials on the large surface area to confirm that the investigated samples were indeed the doped CeO₂ materials. The EDX data were found support the proposed chemical composition and is consistent with our earlier work [14,33].

In order to validate our proposed structural transformation reactions, we have performed HRTEM and ED studies on four different fluorite-type compounds such as $Ce_{0.9}In_{0.1}O_{1.95}$, $Ce_{0.8}In_{0.2}O_{1.9}$, $Ce_{0.9}Y_{0.1}O_{1.95}$, and $Ce_{0.8}Y_{0.2}O_{1.9}$ prepared by CO₂ mediated reactions. In Figs. 3 and 4, we show typical HRTEM images of 10 mol% and 20 mol% In_2O_3 -doped CeO₂ synthesized from the corresponding In-doped BaCeO₃ at elevated temperature under CO₂, respectively. Shown in Figs. 5 and 6 are the corresponding data for the 10 mol% and 20 mol% Y_2O_3 -doped CeO₂ synthesized from the layered structure Sr_2CeO_4 .

As anticipated, the selected area ED patterns showed the lines only due to fluorite-type structure. We have successfully assigned all the diffraction lines into CeO_2 structure and are

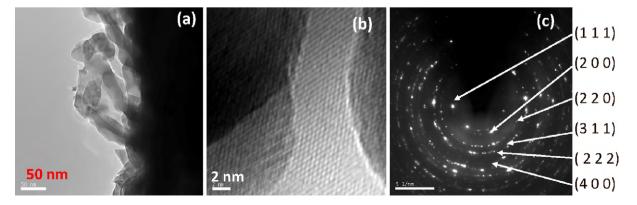
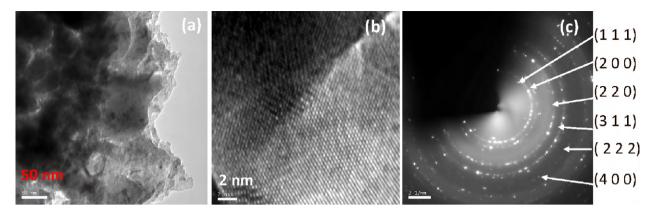



Fig. 5. TEM and HRTEM images of as-prepared (CO₂ capture method) powdered Ce_{0.9}Y_{0.1}O_{1.95} from the corresponding 10 mol% Y-doped Sr₂CeO₄: (a) 100 nm scale, (b) 2 nm scale and (c) selected area electron diffraction pattern.

Fig. 6. TEM and HRTEM images of as-prepared (CO₂ capture method) powdered Ce_{0.8}Y_{0.2}O_{1.9} from the corresponding 20 mol% Y-doped Sr₂CeO₄: (a) 100 nm scale, (b) 2 nm scale and (c) selected area electron diffraction pattern.

consistent with powder XRD data. We did not observe any main diffraction lines due to cubic In₂O₃ (e.g., 222 plane; $d \approx 2.92$ Å) joint committee on powder diffraction standard (JCPDS Card 060-416; JCPDS card no. 65-3170), hexagonal In₂O₃ (JCPDS card no. 22-0336), and Y2O3 (JCPDS card no. 25-1200) as well as the starting materials in the product, confirming the proposed transformation reaction. HRTEM shows the formation of nano-sized material which was found to consistent with several authors report of nano-sized CeO₂ [34-36]. The Y-sample was found have slightly larger particle size than that of the In-doped samples. Mechanistically, at elevated temperatures, the perovskite-like $BaCe_{1-x}In_xO_{3-\delta}$ (x=0.1; 0.2) and layered perovskite-related $Sr_2Ce_{1-x}Y_xO_{4-\delta}$ (x = 0.1; 0.2) structures transform into their corresponding fluorite-type $Ce_{1-x}In_xO_{2-\delta}$ and $Ce_{1-x}Y_xO_{2-\delta}$ and BaCO₃. These fluorite-type phases of In-doped CeO₂ are stable up to \sim 800 °C [12,15].

4. Conclusions

In summary, the ED and TEM investigations strongly support the formation of In and Y-doped fluorite-type $Ce_{1-x}In_xO_{2-\delta}$ and $Ce_{1-x}Y_xO_{2-\delta}$ from three-dimensional (3D) perovskite-like $BaCe_{1-x}In_xO_{3-\delta}$ (x=0.1; 0.2) and layered (two-dimensional) perovskite-related $Sr_2Ce_{1-x}Y_xO_{4-\delta}$ (x=0.1; 0.2), respectively, under CO₂ mediated reaction at elevated temperature. The absence of any ED pattern that would correspond to the perovskite-like precursors and potential reaction by-products such as In_2O_3 and Y_2O_3 after the CO₂ reaction, evidently confirms the formation of a single-phase fluorite-type structure, which is consistent with ex situ and in situ powder X-ray diffraction (PXRD) analysis. The HRTEM images also confirmed expected nano-sized materials.

Acknowledgements

V. Thangadurai would like to thank the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Foundation for Innovation (CFI) for the financial support.

References

- [1] M.G. Kanatzidis, K.R. Poeppelmeier, Prog. Solid State Chem. 36 (2008) 1.
- [2] A. Stein, S.W. Keller, T.E. Mallouk, Science 259 (1993) 1558.
- [3] C.N.R. Rao, J. Gopalakrishnan, New Directions in Solid State Chemistry, 2nd ed., Cambridge University Press, Cambridge, 1997.
- [4] S.E. Dann, Reactions and Characterization of Solids, Wiley InterScience, New York, 2002.
- [5] C.N.R. Rao, Chemical Approaches to the Synthesis of Inorganic Materials, John Wiley and Sons, New York, 1994.
- [6] C.B. Alcock, J. Alloys Compd. 197 (1993) 217.
- [7] R. Marchand, L. Brohan, M. Tournoux, Mater. Res. Bull. 15 (1980) 1129.
- [8] R.E. Schaak, T.E. Mallouk, Chem. Mater. 14 (2002) 1455.
- [9] J. Gopalakrishnan, Chem. Mater. 7 (1995) 1265.
- [10] W. Sugimoto, M. Shirata, Y. Sugahara, K. Kuroda, J. Am. Chem. Soc. 121 (1999) 11601.
- [11] Y. Tsunoda, M. Shirata, W. Sugimoto, Z. Liu, O. Terasaki, K. Kuroda, Y. Sugahara, Inorg. Chem. 40 (2001) 5768.
- [12] F. Trobec, V. Thangadurai, Inorg. Chem. 47 (2008) 8972.
- [13] B.R. Sneha, V. Thangadurai, J. Solid State Chem. 180 (2007) 2661.
- [14] R.G. Gerlach, S.S. Bhella, V. Thangadurai, Inorg. Chem. 48 (2009) 257.
- [15] S.S. Bhella, S. Shafi, F. Trobec, M. Bieringer, V. Thangadurai, Inorg. Chem. 49 (2010) 1699.
- [16] K.D. Kreuer, Solid State Ionics 97 (1997) 1.
- [17] K.D. Kreuer, Annu. Rev. Mater. Res. 33 (2003) 333.
- [18] H. Iwahara, Y. Asakura, K. Katahira, M. Tanaka, Solid State Ionics 168 (2004) 299.
- [19] C.W. Tanner, A.V. Virkar, J. Electrochem. Soc. 143 (1996) 1386.
- [20] S.V. Bhide, A.V. Virkar, J. Electrochem. Soc. 146 (1999) 2038.
- [21] S.V. Bhide, A.V. Virkar, J. Electrochem. Soc. 146 (1999) 4386.
- [22] H. Matsumoto, Y. Kawasaki, N. Ito, M. Enoki, T. Ishihara, Electrochem. Solid-State Lett. 10 (2007) B77.
- [23] A.K. Azad, J.T.S. Irvine, Solid State Ionics 178 (2007) 635.
- [24] G. Chiodellia, L. Malavasi, C. Tealdi, S. Barison, M. Battagliarin, L. Doubova, M. Fabrizio, C. Mortalo, R. Gerbasi, J. Alloys Compd. 470 (2009) 477.
- [25] K. Xie, R. Yan, X. Liu, J. Alloys Compd. 479 (2009) L40.
- [26] R. Yan, Q. Wang, G. Chen, W. Huang, K. Xie, Ionics 15 (2009) 749.
- [27] K. Xie, R. Yan, X. Liu, J. Alloys Compd. 479 (2009) L36.
- [28] R. Yan, Q. Wang, K. Xie, Ionics 15 (2009) 501.
- [29] R. Yan, G. Chen, F. Wang, Q. Wang, W. Huang, J. Alloys Compd. 486 (2009) L10.
- [30] K. Xie, R. Yan, X. Xu, X. Liu, G. Meng, Mater. Res. Bull. 44 (2009) 1474.
- [31] J.B. Goodenough, Annu. Rev. Mater. Res. 33 (2003) 91.
- [32] S.B. Adler, Chem. Rev. 104 (2004) 4791.
- [33] S.S. Bhella, L.M. Kuti, Q. Li, V. Thangadurai, Dalton Trans. (2009) 9520.
- [34] C. Sun, H. Li, H. Zhang, Z. Wang, L. Chen, Nanotechnology 16 (2005) 1454.
- [35] C. Hu, Z. Zhang, H. Liu, P. Gao, Z.L. Wang, Nanotechnology 17 (2006) 5983.
- [36] A.I.Y. Tok, F.Y.C. Boey, Z. Dong, X.L. Sun, J. Mater. Process. Technol. 190 (2007) 217.